Ultrasound has the potential to detect degeneration of articular cartilage clinically, even if the information is obtained from an indirect measurement of intrinsic physical characteristics

نویسندگان

  • Hiroshi Kuroki
  • Yasuaki Nakagawa
  • Koji Mori
  • Masahiko Kobayashi
  • Ko Yasura
  • Yukihiro Okamoto
  • Takashi Suzuki
  • Kohei Nishitani
  • Takashi Nakamura
چکیده

We appreciate the concern shown by Zheng and Huang [1] regarding our earlier article [2]. We presented simple data showing that the ultrasound response of articular cartilage may be related to its International Cartilage Repair Society grading, and concluded that ultrasound evaluation using the signal intensity – dependent on the ultrasound reflection coefficient at the cartilage surface – may be helpful to differentiate International Cartilage Repair Society grades, especially grade 0 from grade 1 cartilage [2]. Our ultrasound system obtains indirect information on intrinsic physical characteristics of living human articular cartilage in vivo. We recognize that the ultrasound signal intensity of articular cartilage relates to the parameters of the tissue reflection coefficient, acoustic impedance, the elastic modulus, and surface conditions. In clinical settings, however, these parameters are difficult to measure separately. We therefore consider that the signal intensity obtains information including these parameters. We do not disregard measuring the intrinsic physical characteristics. Indeed, the signal intensity (maximum magnitude) correlated significantly with the aggregate modulus of articular cartilage [3]. We mentioned the equations of Young modulus, indicating the speed of sound, the density of a material, and the acoustic impedance of a material [4], and presented the Gabor function as the mother wavelet and equations [2]. The signal intensity did not depend on the surface curvature for radii >40 mm, and mainly reflects the condition from the surface of the cartilage to a depth of one wavelength (about 0.150 mm) [5]. The tip of the probe with an ultrasonic transducer is designed to achieve uniform distance between the transducer and the cartilage surface. Our ultimate goal is not to measure the intrinsic physical characteristics but to improve the diagnostic use of an arthroscopic ultrasound system and the method to detect the early stage of degeneration of human articular cartilage. The signal intensity, considering tissue histology [4] and estimation of the mechanical property of meniscus [6], was studied aiming toward human clinical study [7]. Our ultra-sound system can be used with the arthroscopic probe and can obtain information on the degeneration of human articular cartilage in vivo. It is not easy to calculate the intrinsic physical characteristics from an ultrasonic echo obtained under arthroscopy. True it is ideal that the intrinsic physical characteristics of cartilage are measured accurately, but this is still difficult in clinical settings using existing devices. The authors consider that weakness to measure the intrinsic physical characteristics accurately does …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More intrinsic parameters should be used in assessing degeneration of articular cartilage with quantitative ultrasound

During the last decade, the quantitative ultrasound technique has been widely employed as a versatile modality to investigate a thin but crucial tissue layer--the articular cartilage. Previous studies provide information about the morphology and mechanical and acoustic properties of the tissue derived from ultrasound measurements and correlate them with cartilage degeneration. In a previous iss...

متن کامل

Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage

Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...

متن کامل

Mesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture

Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...

متن کامل

Intravascular Ultrasound (IVUS): A Potential Arthroscopic Tool for Quantitative Assessment of Articular Cartilage

Conventional ultrasound examination of the articular cartilage performed externally on the body surface around the joint has limited accuracy due to the inadequacy in frequency used. In contrast to this, minimally invasive arthroscopy-based ultrasound with adequately high frequency may be a better alternative to assess the cartilage. Up to date, no special ultrasound transducer for imaging the ...

متن کامل

Studying Relationship between Coal Intrinsic Characteristics in Spontaneous Combustion of Coal Potential Using Crossing Point Temperature Test Method

Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic loss, and environmental pollution. The aim of this work is to determine the spontaneous combu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arthritis Research & Therapy

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2009